

Emergent Cosmology From Matrix Theory

Samuel Laliberte

samuel.laliberte@mail.mcgill.ca

July 5th, 2022

Standard Big Bang Cosmology is very successful at describing our current universe.

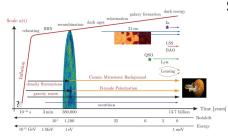
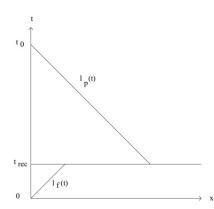


Figure: Brief overview of the thermal history of the universe

Some notable successes:

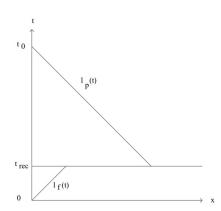
- Distant galaxies are red shifted.
- The CMB exists and we can extract a wealth of information from it.
- Abundance of light elements matches predictions from BBN.



Horizon Problem

Causality alone cannot explain the observed homogeneity our observed universe.

Figure: Sketch illustrating the horizon problem of SBB cosmology



Horizon Problem

Causality alone cannot explain the observed homogeneity our observed universe.

Flatness Problem

 $|\Omega-1|\sim\,T^{-2}$

 $\Omega\approx 1 \text{ requires extreme initial} \\ \text{fine tuning!}$

Figure: Sketch illustrating the horizon problem of SBB cosmology

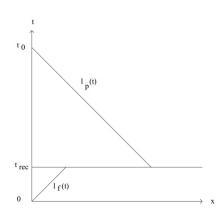


Figure: Sketch illustrating the horizon problem of SBB cosmology

Horizon Problem

Causality alone cannot explain the observed homogeneity our observed universe.

Flatness Problem

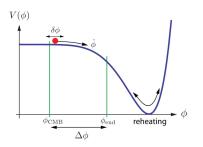
$$|\Omega-1| \sim T^{-2}$$

 $\Omega\approx 1$ requires extreme initial fine tuning!

Singularity Problem

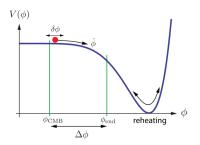
 $ho \sim a^{-4}(t)$ (Radiation era)

Energy density blows up when $a(t) \rightarrow 0$.



A long enough period of inflation can solve the problems of SBB cosmology.

Figure: Example of inflaton potential. The inflaton slowly rolls down the potential until the conditions for inflation are broken.



A long enough period of inflation can solve the problems of SBB cosmology.

But...

Inflation is in conflict with recent Swampland conjectures.

Figure: Example of inflaton potential. The inflaton slowly rolls down the potential until the conditions for inflation are broken.

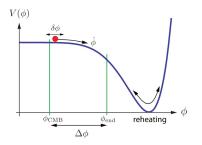


Figure: Example of inflaton potential. The inflaton slowly rolls down the potential until the conditions for inflation are broken. A long enough period of inflation can solve the problems of SBB cosmology.

But...

Inflation is in conflict with recent Swampland conjectures.

de Sitter conjecture: The scalar potential V is constrained by

$$|\nabla V| \ge cV$$
 , $\min(\nabla_i \nabla_j V) \le -c'V$.

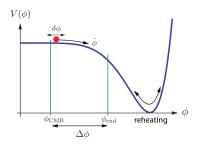


Figure: Example of inflaton potential. The inflaton slowly rolls down the potential until the conditions for inflation are broken. A long enough period of inflation solves the problems of SBB cosmology.

But...

Inflation is in conflict with recent Swampland conjectures.

de Sitter conjecture: The scalar potential *V* is constrained by

 $|\nabla V| \ge cV$, $\min(\nabla_i \nabla_j V) \le -c'V$.

TCC conjecture: The duration t of inflation is constrained by

$$t \leq H^{-1}\ln(H^{-1}).$$

Singularity problem in string theory

Singularity problem in string theory

Inflation does not solve the singularity problem. Moreover, the singularity problem is hard to deal with in perturbative descriptions of string theory.

$$S_{st} = \frac{1}{2\kappa^2} \int d^{10}x \sqrt{-g} e^{-2\phi} \left[R + \frac{\alpha'}{8} R_{GB}^2 + \ldots \right] + S_{matter}$$

For cosmological solutions, the perturbative description holds when

$$R \gg rac{lpha'}{8} R_{GB}^2 \implies t \gg \sqrt{lpha'}$$

Singularity problem in string theory

Singularity problem in string theory

Inflation does not solve the singularity problem. Moreover, the singularity problem is hard to deal with in perturbative descriptions of string theory.

$$S_{st} = rac{1}{2\kappa^2} \int d^{10}x \sqrt{-g} e^{-2\phi} \left[R + rac{lpha'}{8} R_{GB}^2 + ...
ight] + S_{matter}$$

For cosmological solutions, the perturbative description holds when

$$R \gg rac{lpha'}{8} R_{GB}^2 \implies t \gg \sqrt{lpha'}$$

Possible Solution

Look for new early universe cosmology scenarios based on nonperturbative approaches to string theory (e.g. Matrix descriptions of string theory).

The IKKT model is a non-perturbative formulation of type IIB string theory in ten dimensions. The action of the IKKT model is given by

$$S_{IKKT} = -\operatorname{Tr}\left(rac{1}{4g^2}[A_\mu,A_
u][A^\mu,A^
u] + rac{1}{2g^2}ar{\psi}\Gamma^\mu[A_\mu,\psi]
ight)$$

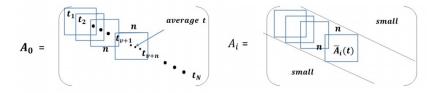
where A_{μ} (μ = 0, ... , 9) and ψ are N imes N Hermitian matrices.

Here, space-time is described by the matrix elements A_0 and A_i , which hold information about time and space respectively.

[N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, , Nucl. Phys. B 498, 467-491 (1997)]

Numerical solutions of the IKKT model

To find dynamical solutions, we must minimize the IKKT action (including fermions) using Monte-Carlo methods. When A^0 is chosen to be diagonal, A^i has a band diagonal structure (see below).



Time parameter

$$t \equiv \frac{1}{n} \sum_{a=1}^{n} t_{\nu+a}$$

Time evolving matrix element

$$ar{A}^{ab}_i(t)\equiv \langle t_{
u+a}|A_i|t_{
u+b}
angle$$

[S. W. Kim, J. Nishimura and A. Tsuchiya, Phys. Rev. Lett. 108, 011601 (2012)]

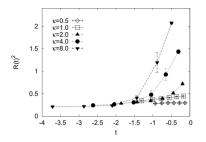


Figure: The extent of space $R(t)^2$ becomes large at a critical time t_c .

Extent of space parameter

$$R(t)^2 \equiv \frac{1}{n} \mathrm{Tr} \bar{A}_i(t)^2$$

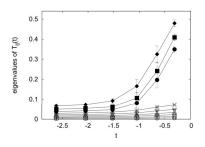


Figure: 3 out of 9 eigenvalues of T_{ij} become large at a critical time t_c .

Moment of inertia tensor

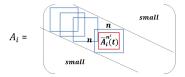
$$T_{ij}(t) \equiv rac{1}{n} \operatorname{Tr} \{ ar{A}_i(t) ar{A}_j(t) \}$$

Emergent Space

Define a $n_i \times n_i$ matrix $\bar{A}_i^{n_i}$, which holds information about a comoving interval $[-n_i, n_i]$.

Space defined in this way has a few interesting properties.

Figure: Band diagonal structure of the A_i matrices.



Emergent Space

Define a $n_i \times n_i$ matrix $\bar{A}_i^{n_i}$, which holds information about a comoving interval $[-n_i, n_i]$.

Space defined in this way has a few interesting properties.

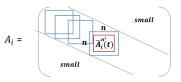
Space is infinite

The maximal comoving distance n_c scales as

$$n_c \sim \sqrt{N}$$
.

We obtain an infinite space as $N \rightarrow \infty$.

Figure: Band diagonal structure of the A_i matrices.



Emergent Space

Define a $n_i \times n_i$ matrix $\bar{A}_i^{n_i}$, which holds information about a comoving interval $[-n_i, n_i]$.

Space defined in this way has a few interesting properties.

Space is infinite

The maximal comoving distance *n_c* scales as

$$n_c \sim \sqrt{N}$$
.

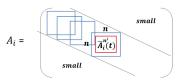
We obtain an infinite space as $N \rightarrow \infty$.

Figure: Band diagonal structure of the A_i matrices.

Space is continuous The interval δx between comoving coordinates scales as

 $\delta x \sim N^{-1/2}$

Space becomes continuous as $N \to \infty$.



To derive the metric, we first define the physical length of a curve in the interval $[-n_i, n_i]$ as

$$l_i^2(t,n_i) \equiv \langle \operatorname{Tr}(\bar{A}_i^{n_i}(t))^2 \rangle$$
.

Then, we note that g_{ii} can be computed from the physical length along i in the following way

$$l_i(t,x) = \int_{y=-x}^{y=x} \sqrt{g_{ii}} dy \implies \sqrt{g_{ii}} = \frac{d}{dn_i} l_i(t,n_i).$$

If we assume that $A_i^2 \sim const.$ and that our solution is SO(3) symmetric, we obtain

$$g_{ij}=A(t)\delta_{ij}\,,$$

where A(t) is a time-dependent amplitude. We obtain a homogeneous and isotropic metric, as expected.

The BFSS model is a non-perturbative formulation of M-Theory compactified to 10 dimensions. The (Euclidean) action of the BFSS model is given by

$$S_{BFSS} = \frac{1}{2g^2} \int_0^\beta dt \operatorname{Tr}\left(\frac{1}{2}(D_t X_i)^2 - \frac{1}{4}[X_i, X_j]^2 + \theta^T D_t \theta - \theta^T \Gamma^i[\theta, X_i]\right)$$

where the covariant derivative is defined by $D_t = \partial_t - i[A(t), \cdot]$. Here, the X^i 's are a set of 9 $N \times N$ hermitian matrices, the θ 's are spinors of SO(9), and A(t) is an $N \times N$ matrix which we will take to be constant.

[T. Banks, W. Fischler, S. H. Shenker and L. Susskind, Phys. Rev. D 55, 5112-5128 (1997)

[arXiv:hep-th/9610043 [hep-th]].]

Let us assume the universe is described by a thermal state of the BFSS model. For a box of size L, the power spectra can be computed directly from the partition function of the system.

$$Z = \int dAd\psi e^{-S_{BFSS}}$$

For exemple, the dimensionless power spectrum $P_{\psi}(k)$ of scalar perturbations is sourced by energy density perturbations

$$P_{\psi}(k) = 16\pi^2 G^2 k^{-4} \delta \rho^2 \quad , \quad \delta \rho^2 = \frac{T^2}{L^6} C_V \, ,$$

which are proportional to the heat capacity of the system.

Similarly, the dimensionless power spectrum $P_h(k)$ of scalar perturbations is sourced by the transverse pressure perturbations of the system.

$$P_h(k) = 16\pi^2 G^2 k^{-4} C_{ij}^{ij}$$
 , $C_{ij}^{ij} = \alpha \frac{T}{L^2} \frac{\partial \tilde{p}}{\partial L}$

For a space-time described by the thermal BFSS model, the spectrum of scalar and tensor perturbations is given by

$$P_{\phi,h}(k) \sim (l_s m_{pl})^{-4} k^2 \langle R^2 \rangle \quad , \quad R^2 = \frac{1}{N} \operatorname{Tr}(X_0^{i2}) \, .$$

Since $\langle R^2 \rangle \sim k^{-2}$, we obtain a scale-invariant power spectrum of amplitude $\mathcal{A} \sim (I_s m_{pl})^{-4}$ for both scalar and tensor perturbations!

Symmetry breaking in the BFSS model

It remains to show that SO(10) is broken to $SO(4) \times SO(6)$ as the temperature of the system decreases. At high temperatures, the BFFS action can be approximated as

$$S_{BFSS} \approx -\frac{\beta}{4g^2} \operatorname{Tr}[A^{\mu}, A^{\nu}]^2 + \frac{i\beta}{2g^2} \sum_{r} \psi_{-r}[A, \psi_r] + \dots$$

In the IKKT model, it was shown that fermion lead to symmetry breaking. This was done by adding and substracting the Gaussian action

$$S_0 = \sum_{\mu=1}^D \frac{N}{\nu_{\mu}} \operatorname{Tr} \left(A_{\mu} A_{\mu} \right) + \frac{N}{2} \sum_{a=1}^{N^2-1} \psi_{\alpha}^a M_{\alpha\beta} \psi_{\beta}^a \,,$$

to the IKKT action. Minimizing the free energy with respect to v_{μ} and $M_{\alpha\beta}$, we find that $SO(4) \times SO(6)$ is the prefered symmetry breaking breaking pattern!

We explored a early universe scenario in which a 4 dimensional space is emergent in the IKKT and BFFS model.

We explored a early universe scenario in which a 4 dimensional space is emergent in the IKKT and BFFS model.

- IKKT model:
 - The universe begins in a SO(9) symmetric state. Then, after a critical time, numerical studies show that SO(9) is broken to $SO(3) \times SO(6)$ and a 4 dimensional universe emerges with 4 large dimensions.
 - We are not able to compute the spectrum of cosmological perturbations yet. However, we now have a proposal for the space-time metric.

We explored a early universe scenario in which a 4 dimensional space is emergent in the IKKT and BFFS model.

- IKKT model:
 - The universe begins in a SO(9) symmetric state. Then, after a critical time, numerical studies show that SO(9) is broken to $SO(3) \times SO(6)$ and a 4 dimensional universe emerges with 4 large dimensions.
 - We are not able to compute the spectrum of cosmological perturbations yet. However, we now have a proposal for the space-time metric.
- BFSS model
 - The universe begins in a high temperature SO(9) symmetric state. There are good reasons to think that the SO(9) symmetric state is broken to $SO(3) \times SO(6)$ at lower temperatures (still under study).
 - The universe emerges with a scale invariant spectrum of scalar and tensor perturbations.

Thank You for your attention.